Abstrakt: |
The number of vibration response sensors required for structural damage detection andprecise localization on a continuous structural topology is investigated. For damage detection thestate–of–the–art of vibration based methods need a required number of sensors q that may be “low”compared to the number of structural modes m, that is q << m. Yet, the opposite is generally suggestedfor precise damage localization, that is q > m. In this study the hypothesis that a “low” numberof vibration response sensors, q << m, may, under certain conditions, suffice for precise damage localization,is postulated. This hypothesis is “proven” experimentally by demonstrating that preciselocalization is indeed possible using a single vibration response sensor and an advanced StructuralHealth Monitoring methodology on a laboratory 3D truss structure. |