Axisymmetric Elasticity Solutions of Spherical Shell Segments

Autor: Levine, H. S., Klosner, J. M.
Zdroj: Journal of Applied Mechanics; March 1971, Vol. 38 Issue: 1 p197-208, 12p
Abstrakt: A series solution for the stresses and displacements of a spherical segment subjected to arbitrary axisymmetric surface tractions and edge boundary conditions is presented. A least-square point-matching technique is used to satisfy the specified edge conditions. The general solution for the axisymmetric case has been obtained by utilizing two sets of functions, namely, the Lure´ homogeneous functions and the full sphere functions used by Sternberg, Eubanks, and Sadowsky. In particular, solutions to the following problems have been obtained: (a) the spherical segment with a stress free edge subjected to a centrifugal force field; (b) the spherical segment subjected to an external pressure varying as cos2N θ supported on a rigid surface with no shear resistance; and (c) the hemisphere having zero traction on its spherical surfaces subjected to edge shear stresses. The results are presented in graphic form, which demonstrate the boundary-layer effect. Heretofore solutions to these types of problems have been obtained by using shell theory approximations.
Databáze: Supplemental Index