The Effect of Oxide Microstructure on Kinetic Transition in Out-of-pile Steam Corrosion Test for Zircaloy-2 and Nb-added Zircaloy-2

Autor: NANIKAWA, Shuichi, ETOH, Yoshinori
Zdroj: Journal of Nuclear Science and Technology; June 2001, Vol. 38 Issue: 6 p420-428, 9p
Abstrakt: In order to study the mechanism of kinetic transition of corrosion rate for zirconium alloys, oxide films formed on Zircaloy-2 (Zry-2) and Nb-added Zircaloy-2 (0.5Nb/Zry-2) in steam at 673 K and 10.3 MPa were examined with TEM and SIMS.Kinetic transition occurred at almost the same oxide thicknesses for both Zry-2 and 0.5Nb/Zry-2, but the corrosion rate after the transitions were quite different for the two alloys. Zircaloy-2 showed cyclical oxidation, while the weight gain of 0.5Nb/Zry-2 increased linearly.The morphology and crystal structure were similar for the oxides of the two alloys and both the oxide films still mainly consisted of columnar grains even after the transition. Interface layers which mainly consisted of a-Zr crystallites were observed for both alloys and the oxygen content in the interface layers increased after the transition.The solute concentrations of Fe, Cr and Ni became higher, accompanying the increase of oxygen concentrations at columnar grain boundaries in the oxide films after the transition for 0.5Nb/Zry-2. It was thought that the properties of grain boundaries of the 0.5Nb/Zry-2 oxide films changed after the transition, and the increase in oxygen diffusivity at grain boundaries caused the linear increase in weight gain.
Databáze: Supplemental Index