Autor: |
Xu, Wei Feng, Liu, Jin He, Chen, Dao Lun, Luan, Guo Hong, Yao, Jun Shan |
Zdroj: |
Advanced Materials Research; July 2011, Vol. 291 Issue: 1 p833-840, 8p |
Abstrakt: |
Microstructures, tensile properties and work hardening behavior of friction stir welded (FSWed) AA2219-T62 aluminum alloy (in its one-third bottom slice of a 20 mm thick plate) were evaluated at different strain rates. While the yield strength was lower in the FSWed joint than in the base metal, the ultimate tensile strength of the FSWed joint approached that of the base metal. In particular the FSW resulted in a significant improvement in the ductility of the alloy due to the prevention of premature failure caused by intergranular cracking along the second-phase boundary related to the presence of the network-like grain boundary phase in the base metal. While stage III and IV hardening occurred after yielding in both base metal and FSWed samples, the FSW led to stronger hardening capacity and higher strain hardening exponent and rate due to the enhanced dislocation storage capacity associated with the microstructural change after FSW. The fracture surface of the FSWed joint was mainly characterized by dimples and tearing ridges along with micropores. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|