Scattering for a wave equation with different spatial asymptotics on the left and right
Autor: | Boto, João Pedro |
---|---|
Zdroj: | Mathematical Methods in the Applied Sciences; December 1999, Vol. 22 Issue: 18 p1621-1646, 26p |
Abstrakt: | We study the scattering for a one‐dimensional wave equation with a measurable positive potential $V$, locally bounded away from zero and satisfying $lim_{x\rightarrow\infty}V(x)=+\;\infty$and $V(x)=O(\vert x\vert^{-2-\varepsilon})$as $x\rightarrow-\;\infty$, for some $\varepsilon>0$. By using a combination of ideas from the Lax–Phillips theory and the Enss method we prove the existence and the completeness of the wave operators $W_{\pm}$. Copyright © 1999 John Wiley & Sons, Ltd. |
Databáze: | Supplemental Index |
Externí odkaz: |