A Composite Consisting of a Set of Hexagonal Ceramic Bars - The Numerical Study of the Ballistic Resistance

Autor: Stanislawek, Sebastian, Morka, Andrzej, Niezgoda, Tadeusz
Zdroj: Key Engineering Materials; February 2011, Vol. 471 Issue: 1 p1142-1146, 5p
Abstrakt: The paper presents a numerical study of a double layer composite panels impacted by a AP (Armor Piercing) 51WC projectile. The standard panel is built with aluminum and Al2O3 ceramic continuum layers while the studied model consists of the same aluminum plate but the front one is built with a set of hexagonal ceramic bars. The bar width and the impact position influence on the ballistic resistance are analyzed and compared with the reference solution. The problem has been solved with the usage of the modeling and simulation methods as well as finite elements method implemented in LS-DYNA software. Space discretization for each option was built by three dimension elements guarantying satisfying accuracy of the calculations. For material behavior simulation specific models including the influence of the strain rate and temperature changes were considered. Projectile Tungsten Curbide and aluminum plate material were described by Johnson-Cook model and ceramic target by Johnson-Holmquist model. In the studied panels the area surrounding back edges was supported by a rigid wall. The obtained results show interesting properties of the examined structures considering their ballistic resistance. All tests has given clear results about ballistic protection panel response under WC projectile impact. Panels consisting of sets of hexagonal ceramic bars are slightly easier to penetrate, reference model is stronger by 19% for smaller bars and by only 7% for bigger rods. Despite this fact, the ceramic layer is much less susceptible to overall destruction what makes it more applicable for the armor usage. Furthermore, little influence of the projectile impact point and consequently a part of the bar which is first destroyed is proved.
Databáze: Supplemental Index