A sharp pointwise bound for functions with $L\sp 2$-Laplacians on arbitrary domains and its applications

Autor: Xie, Wenzheng
Zdroj: Bulletin of the American Mathematical Society; April 1992, Vol. 26 Issue: 2 p294-298, 5p
Abstrakt: For all functions on an arbitrary open set $ \Omega \subset {R^3}$
$\displaystyle \mathop {{\text{sup}}}\limits_\Omega \vert u\vert \leq {(2\pi )^{... ... }\vert\nabla u{\vert^2}dx{\smallint _\Omega }\vert\Delta u{\vert^2}dx)^{1/4}}.$ The method of proof is elementary and admits generalizations. The inequality is applied to establish an existence theorem for the Burgers equation.
Databáze: Supplemental Index