Abstrakt: |
Let X be an arbitrary reflexive Banach space, and let $ \mathcal{N}$X. Denote by $ \mathcal{D}(\mathcal{N})$ $ \operatorname{Alg}\mathcal{N}$ $ \operatorname{Alg}\mathcal{N}$ $ N \subset \mathcal{N}$ $ {N_ - } = \vee \{ M \in \mathcal{N}:M \subset N\} $ $ {0_ - } = 0$ $ E, F \in \mathcal{N}$ $ (E,F] = \{ K \in \mathcal{N}:E \subset K \subseteq F\} $ $ \mathcal{D}(\mathcal{N})$ $ 0 \ne E \in \mathcal{N}$ $ X \ne F \in \mathcal{N}$ $ M \in (0,E]$ $ N \in (F,X]$ $ {M_ - } \subset M$ . In particular, we prove that this condition automatically holds for nests acting on finite-dimensional Banach spaces. |