The $\alpha $-union theorem and generalized primitive recursion

$ \alpha > \omega $ cannot possess natural analogues to Grzegorczyk's hierarchy. -->
Autor: Jacobs, Barry E.
Zdroj: Transactions of the American Mathematical Society; 1978, Vol. 237 Issue: 1 p63-81, 19p
Abstrakt: A generalization to $ \alpha $Let $ \Phi $be an $ \alpha $computational complexity measure and $ \{ {f_\varepsilon }\vert\varepsilon < \alpha \} $-r.e. strictly increasing sequence of $ \alpha $recursive functions. Then there exists an $ \alpha $recursive function k such that $ C_k^\Phi = { \cup _{\varepsilon < \alpha }}C_{{f_\varepsilon }}^\Phi $ Two infinite analogues to ($ \omega $, they diverge on all admissible $ \alpha > \omega $ \omega$ --> $ \alpha > \omega $ cannot possess natural analogues to Grzegorczyk's hierarchy.
Databáze: Supplemental Index