Autor: |
Husain, Nurulakmar Abu, Snaylam, Andy, Khodaparast, Hamed Haddad, James, S., Dearden, Geoff, Ouyang, Hua Jiang |
Zdroj: |
Key Engineering Materials; June 2009, Vol. 413 Issue: 1 p393-400, 8p |
Abstrakt: |
Finite Element (FE) model updating is initially developed to update numerical models of structures to match their experimentally measured modal properties (i.e., natural frequencies and modes). In FE model updating, uncertain physical parameters of a structure are modified so that the discrepancies between the numerically estimated and experimentally measured modal properties are minimized. The process of updating is employed not only in parameter identification; it can also be developed for structural damage identification. In this work, a welded structure that is intended to represent a common configuration used in automotive body construction is investigated. It is known that presence of any damage in the welds of such a structure could affect its dynamic behavior. So, in theory modal test data can allow damage to be assessed accurately. As a typical automotive body contains thousands of welds, the effects of damage in the welds could be influential. The FE model updating process using experimental data is presented. It is carried out using NASTRAN optimization code. The procedure aims to adjust the uncertain properties of the FE model (from the weld joints) by minimizing the differences between the measured modal properties and the corresponding numerical predictions. The initial parameter values used in the numerical model are the nominal values. The procedure brings the numerical results of the structure as close as possible to the experimental ones, according to an objective function, therefore altering some of the FE model parameters of the structure. It may be concluded that when the identified values of certain parameters deviates from the nominal values to certain extent, there is a fault or damage at that particular joint. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|