Lack of tumor-promoting effects of flavonoids: Studies on rat liver preneoplastic foci and on in vivo and in vitro gap junctional intercellular communication

Autor: Chaumontet, Catherine, Suschetet, Marc, Honikman-Leban, Esther, Krutovskikh, Vladimir, Berges, Raymond, Bon, Anne-Marie Le, Heberden, Christine, Shahin, Majdi, Yamasaki, Hiroshi, Martel, Paule
Zdroj: Nutrition and Cancer; 1996, Vol. 26 Issue: 3 p251-263, 13p
Abstrakt: Possible tumor-promoting activity of four flavonoids, quercetin (QC), tangeretin (TG), flavone (FO), and flavanone (FN), was examined in a rat liver short-term carcinogenesis assay as well as with in vivo and in vitro assays of inhibition of gap junctional intercellular communication (GJIC). Rat hepatocarcinogenesis was induced by aflatoxin B1 treatment followed by a selection phase (2-acetylaminofluorene treatment and partial hepatectomy), then treatment with or without test chemicals (in vivo studies of antipromotion were not performed). Using glutathione S-transferase placental form (GST-P)-positive foci, we compared the effects of flavonoids (at 1,000 ppm in the diet) with the effects of phenobarbital (PB) on the occurrence of liver preneoplastic lesions. In addition, we studied the effects of flavonoids on GJIC in the livers derived from these experiments and in two types of cultured cells. No significant difference in the number and area of GST-P-positive foci was found after one or three months of treatment between any flavonoid group and control group. In the positive control group, PB markedly increased the numbers and areas of preneoplastic lesions at three months. Whereas PB also decreased by 60% the average size of lucifer yellow dye spread in slices of liver parenchyma free of preneoplastic lesions among the different flavonoids, only TG decreased the dye transfer in vivo: by 30% at one month and 50% at three months. With the dye transfer assay applied to a rat liver epithelial cell line (REL) and the Chinese hamster V79 metabolic cooperation assay, none of the tested flavonoids (≤25μM) inhibited GJIC. Conversely, protective properties were seen for some of the compounds in antipromotion in vitro studies, because TG and FN enhanced the dye transfer in REL cells and FO, TG, and QC partly prevented the inhibition of metabolic cooperation by 12-O-tetradecanoylphorbol-13-acetate. Thus, taken together, our results suggest that QC, FO, and FN do not show tumor-promoting activity. Concerning TG, some discrepancies in the in vivo data are observed Some of them (GJIC inhibition in liver slices) are probably more relevant to promotion of hepatocarcinogenesis.
Databáze: Supplemental Index