Autor: |
Tanimoto, K, Liu, Q, Grosveld, F, Bungert, J, Engel, J D |
Zdroj: |
Genes & Development; November 2000, Vol. 14 Issue: 21 p2778-2794, 17p |
Abstrakt: |
We explored the mechanism of definitive-stage epsilon-globin transcriptional inactivity within a human beta-globin YAC expressed in transgenic mice. We focused on the globin CAC and CAAT promoter motifs, as previous laboratory and clinical studies indicated a pivotal role for these elements in globin gene activation. A high-affinity CAC-binding site for the erythroid krüppel-like factor (EKLF) was placed in the epsilon-globin promoter at a position corresponding to that in the adult beta-globin promoter, thereby simultaneously ablating a direct repeat (DR) element. This mutation led to EKLF-independent epsilon-globin transcription during definitive erythropoiesis. A second 4-bp substitution in the epsilon-globin CAAT sequence, which simultaneously disrupts a second DR element, further enhanced ectopic definitive erythroid activation of epsilon-globin transcription, which surprisingly became EKLF dependent. We finally examined factors in nuclear extracts prepared from embryonic or adult erythroid cells that bound these elements in vitro, and we identified a novel DR-binding protein (DRED) whose properties are consistent with those expected for a definitive-stage epsilon-globin repressor. We conclude that the suppression of epsilon-globin transcription during definitive erythropoiesis is mediated by the binding of a repressor that prevents EKLF from activating the epsilon-globin gene. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|