Autor: |
Borucki, W. J., Dunham, E. W., Koch, D. G., Cochran, W. D., Rose, J. D., Cullers, D. K., Granados, A., Jenkins, J. M. |
Zdroj: |
Astrophysics and Space Science; March 1996, Vol. 241 Issue: 1 p111-134, 24p |
Abstrakt: |
FRESIP (FRequency of Earth-Sized Inner Planets) is a mission designed to detect and characterize Earth-sizes planets around solar-like stars. The sizes of the planets are determined from the decrease in light from a star that occurs during planetary transits, while the orbital period is determined from the repeatability of the transits. Measurements of these parameters can be compared to theories that predict the spacing of planets, their distribution of size with orbital distance, and the variation of these quantities with stellar type and multiplicity. Because thousands of stars must be continually monitored to detect the transits, much information on the stars can be obtained on their rotation rates and activity cycles. Observations of p-mode oscillations also provide information on their age and composition. These goals are accomplished by continuously and simultaneously monitoring 500 solar-like stars for evidence of brightness changes caused by Earth-sized or larger planetary transits. To obtain the high precision needed to find planets as small as the Earth and Venus around solar-like stars, a wide field of view Schmidt telescope with an array of CCD detectors at its focal plane must be located outside of the Earth's at mosphere. SMM (Solar Maximum Mission) observations of the low-level variability of the Sun (~1:100,000) on the time scales of a transit (4 to 16 hours), and our laboratory measurements of the photometric precision of charge-coupled devices (1:100,000) show that the detection of planets as small as the Earth is practical. The probability for detecting transits is quite favorable for planets in inner orbits. If other planetary systems are similar to our own, then approximately 1% of those systems will show transits resulting in the discovery of 50 planetary systems in or near the habitable zone of solar-like stars. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|