Autor: |
Schmidbauer, J. M., Kugler, P., Horvath, E. |
Zdroj: |
Histochemistry and Cell Biology; August 1990, Vol. 94 Issue: 4 p427-433, 7p |
Abstrakt: |
The enzyme aspartate aminotransferase was demonstrated cytochemically in the rat hippocampus 4, 7, and 14 days after unilateral entorhinal cortex lesion. At the light microscopic level the enzyme showed a significant activity decrease in the ipsilateral entorhinal terminal field which was similar at all postlesion times investigated. Non-denervated areas, i.e. the inner one-third of the dentate gyrus molecular layer and the radiatum layer of CA2/3, showed an increase of aminotransferase activities. At the electron microscopic level in the entorhinal terminal field of the control (unoperated) side aspartate aminotransferase was localized preferentially in a great number of boutons, containing the cytoplasmic and mitochondrial isoenzymes. Following entorhinal lesion a significant loss of these positively reacting boutons was seen. Most of the degenerating boutons contained reaction product but a small number was negative for aspartate aminotransferase. From 4 to 14 postlesion days the positively reacting boutons of the non-denervated supragranular zone expanded outward into the denervated area according to the known terminal proliferation of the commissural and associational systems. The remaining denervated entorhinal terminal field was reinnervated predominantly by negatively reacting boutons (probably terminal proliferations of septal afferents) and by a small number of positively reacting boutons (probably terminal proliferations of the crossed temporodentate pathway). The presence of cytoplasmic aspartate aminotransferase in the terminals of a well-known glutamatergic system is discussed in relation to the possible importance of this enzyme for the production of releasable glutamate. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|