Abstrakt: |
Summary The dorsal-ventral axis inPatella vulgata embryos is established at the 32-cell stage by an inductive interaction between the animal micromeres and one vegetal macromere. This vegetal macromere, once induced, is called the 3D macromere, and marks the future dorsal side of the embryo. We examined the pattern of filamentous (F) actin in such embryos using fluorescent phalloidin and found that this dorsal 3D macromere contains more F-actin than the remainder of the cells. In addition, only one of its two daughter cells, i.e. the 4D macromere, retains this higher density. In embryos in which the establishment of the dorsal-ventral axis has been experimentally inhibited via treatment with monensin, such differences in F-actin were not found. These results suggest that the appearance of an increased density of F-actin in the dorsal 3D and 4D macromeres of normal embryos requires the inductive interactions that establish the dorsal-ventral axis. We therefore conclude that F-actin is an early marker for dorsal induction in thePatella embryo. |