Abstrakt: |
The levels of glutamate (Glu), aspartate (Asp), ?-amino-n-butyric acid (GABA), and taurine (Tau) were determined in the cortex, molecular layer, and deep nuclei of cerebella of adult rats exposed to X-irradiation at 12–15 days following birth (to prevent the acquisition of late-forming granule cells; 12–15x group) and 8–15 days following birth (to prevent the acquisition of granule and stellate cells; 8–15x group). Also, the levels of the four amino acids were measured in the crude synaptosomal fraction (P2) isolated from the whole cerebella of the control, 12–15x, and 8–15x groups. The level of Glu was significantly decreased by (1) 6–20% in the cerebellar cortex; (2) 15–20% in the molecular layer; and (3) 25–50% in the P2 fraction of the X-irradiated groups relative to control values. The content of Glu in the deep nuclei was not changed by X-irradiation treatment. Regional levels of Asp were unchanged by X-irradiation, while its level in P2 decreased by 15–30% after treatment. The levels of GABA and Tau in the molecular layer, deep nuclei, or P2 were not changed in the experimental groups. However, there was a 15% increase in the levels of GABA and Tau in the cerebellar cortex of the 8–15x group relative to control values. The data support the proposed role of glutamate as the excitatory transmitter released from the cerebellar granule cells but are inconclusive regarding a transmitter role for either Tau or GABA from cerebellar stellate cells. |