Genetic and molecular analysis of nonrandom dimer assembly of the creatine kinase isozymes of fishes

Autor: Ferris, Stephen D., Whitt, Gregory S.
Zdroj: Biochemical Genetics; August 1978, Vol. 16 Issue: 7-8 p811-829, 19p
Abstrakt: Species within many families of actinopterygian bony fishes (class Osteichthyes) have a two-banded allelic isozyme phenotype in individuals heterozygous at the creatine kinase A locus. This two-banded pattern is formed by the presence of the two homodimeric isozymes and the absence of the expected heterodimer. Sharks and amphibians have retained the ability to form all three allelic isozymes in individuals which are heterozygous. Reversible denaturation procedures were able to assemble the different allelic CK-A subunits within a species to form CK-A2 heterodimers. Furthermore, heterodimers were formed from different CK-A subunits from highly divergent species after this in vitro molecular hybridization process. It is concluded from these studies that the polypeptidebinding sites of creatine kinase are structurally conservative in most fishes and that the absence of a heterodimer in heterozygous individuals is not due to a structural incompatibility between the different A subunit types or to an instability of the heterodimer during electrophoresis. A temporal and/or spatial isolation of allelic CK-A subunit synthesis and assembly, within differentiated skeletal muscle, appears to have evolved in the actinopterygian bony fishes.
Databáze: Supplemental Index