Autor: |
Bovenberg, W. A., Koes, R. E., Kool, A. J., Nijkamp, H. J. J. |
Zdroj: |
Current Genetics; April 1984, Vol. 8 Issue: 3 p231-241, 11p |
Abstrakt: |
The Petunia hybrida rbcL gene was identified and located on the physical map within the Sall S9 fragment of the Petunia hybrida cpDNA by heterologous hybridization with the cloned rbcL gene of spinach (pSoc3BE148). In E. coli minicells harbouring the S9 fragment inserted into pBR322, the rbcL polypeptide is synthesized as was shown by molecular weight determination, immunoprecipitation and proteolytic digestion. However, the size of the rbcL polypeptide synthesized in minicells appeared to be dependent on the orientation of the S9 fragment in pBR322. In minicells harbouring the S9 fragment inserted into pBR322 in the clockwise orientation the molecular weight of the rbcL polypeptide is approximately 53 kD, whereas in minicells harbouring the S9 fragment in the opposite orientation, the rbcL polypeptide synthesized has a molecular weight of 52 kD. The difference in molecular weight of the two rbcL polypeptides is the result of transcription and translation into the flanking pBR322 sequences. This is due to the absence of the terminal part (6 codons), including the translation stop codon, of the rbcL gene on the cloned S9 fragment as was determined by nucleotide sequencing. The observed expression of the cloned part of the rbcL gene of Petunia hybrida indicates that the E. coli minicell system can be used as a suitable and convenient system for the identification and physical mapping of chloroplast genes. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|