Influence of coal source and treatment upon indigenous microbial communities

Autor: Radway, JoAnn C., Tuttle, Jon H., Fendinger, Nicholas J.
Zdroj: Journal of Industrial Microbiology and Biotechnology; May 1989, Vol. 4 Issue: 3 p195-207, 13p
Abstrakt: Summary The leaching of six Eastern coals was investigated using experimental coal columns subjected to simulated leaching events. Measurements of CO2 assimilation and specific enrichment cultures indicated that the microbial communities of all leachates were dominated by iron- and sulfur-oxidizing chemoautotrophic bacteria. Comparison of CO2 assimilation rates in leachates and core samples of leached coal indicated that most chemoautotrophs remained within coal columns during leaching. Mean numbers of chemoautotrophic bacteria in leachate samples were correlated with concentrations of dissolved iron and sulfate. Leachates from unwashed, run-of-mine coals contained more chemoautotrophs and more iron and sulfate than did leachates from washed, final product coals. After several leachings, the ratio of sulfur oxidizers to iron oxidizers tended to increase. These data suggest that the chemoautotrophic community of final product coals may be pyritelimited. Aerobic heterotrophs constituted a minor component of the microbial community in leachates from the six coals and their abundance and metabolic activity were apparently not influenced by the beneficiation history of the coal. Changes in rates of acetate metabolism may have been related to microbial succession within the heterotrophic community of coal columns. In all leachates, rates of tritiated methylthymidine assimilation were correlated with rates of acetate incorporation but not with CO2 assimilation, even though autotrophs dominated the microflora. Thus, thymidine assimilation rates appear to reflect activities or growth of mainly heterotrophic microorganisms in leachate.
Databáze: Supplemental Index