Autor: |
Hirose, Masahito, Tozawa, Keiichi, Okada, Atsushi, Hamamoto, Shuzo, Shimizu, Hideo, Kubota, Yasue, Itoh, Yasunori, Yasui, Takahiro, Kohri, Kenjiro |
Zdroj: |
Urological Research; 20240101, Issue: Preprints p1-9, 9p |
Abstrakt: |
Abstract: Crystal formation in mice could not be induced either by the administration of ethylene glycol or by glycolate. To clarify the reasons for the difference among these oxalate precursors in mice, we studied renal tubular epithelial injury by immunohistochemical staining of oxidative stress and observing microstructures. Daily intra-abdominal injection of saline solution [10 ml/(kg day)], ethylene glycol[(48.3 mmol/(kg day)], glycolate [1.31 mmol/(kg day)], and glyoxylate [1.35 mmol/(kg day)] into C57BL/6 male mice (8 weeks) was performed for 7 days. Immunohistochemical staining of superoxide dismutase (SOD) and malondialdehyde (MDA), and transmission electron microscopy (TEM) of renal tubular epithelial cells were performed to observe oxidative stress and morphological changes, respectively. Decreased SOD and increased MDA were shown only in glyoxylate-treated mouse kidneys. The TEM study with glyoxylate-treated mouse kidneys demonstrated that the internal structure of mitochondria in renal tubular cells underwent destruction and vacuolization, and microvilli density decreased. These changes in renal tubular cells were located in the crystal-forming area. However, such changes were not detected in the other groups. Each precursor of oxalate induces different changes in renal epithelial cells regarding oxidative stress and the microstructural changes. It is suggested that calcium oxalate crystal formation requires cell injury and morphological changes of renal epithelial tubular cells induced by glyoxylate administration in the mouse kidney. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|