Autor: |
Jiang, J.-l., Rhee, A. M. van, Melman, N., Ji, X.-d., Jacobson, K. A. |
Zdroj: |
Journal of Medicinal Chemistry; November 8, 1996, Vol. 39 Issue: 23 p4667-4675, 9p |
Abstrakt: |
An approach to designing dihydropyridines that bind to adenosine receptors without binding to L-type calcium channels has been described. 1,4-Dihydropyridine derivatives substituted with β-styryl or phenylethynyl groups at the 4-position and aryl groups at the 6-position were synthesized and found to be selective for human A3 receptors. Combinations of methyl, ethyl, and benzyl esters were included at the 3- and 5-positions. Affinity was determined in radioligand binding assays at rat brain A1 and A2A receptors using [3H]-(R)-PIA [[3H]-(R)-N6-(phenylisopropyl)adenosine] and [3H]CGS 21680 [[3H]-2-[[4-(2-carboxyethyl)phenyl]ethylamino]-5-(N-ethylcarbamoyl)adenosine], respectively. Affinity was determined at cloned human and rat A3 receptors using [125I]AB-MECA [N6-(4-amino-3-iodobenzyl)-5-(N-methylcarbamoyl)adenosine]. Structure−activity analysis indicated that substitution of the phenyl ring of the β-styryl group but not of the 6-phenyl substituent was tolerated in A3 receptor selective agents. Replacement of the 6-phenyl ring with a 3-thienyl or 3-furyl group reduced the affinity at A3 receptors by 4- and 9-fold, respectively. A 5-benzyl ester 4-trans-β-styryl derivative, 26, with a Ki value of 58.3 nM at A3 receptors, was >1700-fold selective vs either A1 receptors or A2A receptors. Shifting the benzyl ester to the 3-position lowered the affinity at A3 receptors 3-fold. A 5-benzyl, 3-ethyl ester 4-phenylethynyl derivative, 28, displayed a Ki value of 31.4 nM at A3 receptors and 1300-fold selectivity vs A1 receptors. The isomeric 3-benzyl, 5-ethyl diester was >600-fold selective for A3 receptors. Oxidation of 28 to the corresponding pyridine derivative reduced affinity at A3 receptors by 88-fold and slightly increased affinity at A1 receptors. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|