Abstrakt: |
A bass reflex (or vented or ported) loudspeaker system (BRS) is a particular type of loudspeaker enclosure that makes use of the combination of two second-order mechanic/acoustic devices, i.e., the driver and a Helmotz resonator, in order to create a new system with reinforced emission in the low frequency region. The resonator is composed by the box itself in which one or more ports are present with suitable shapes and dimensions. This category of loudspeaker presents several advantages compared to closed-box systems such as higher efficiency and power, smaller dimensions and reduced distortion at lower frequencies. Notwithstanding these advantages, they present some drawbacks like more complexity and unloading of the cone below the tuning frequency. Moreover, at high power levels the airflow in the port(s) may generate unwanted noises due to turbulence as well as distortion and acoustic compression. In this work we will present and compare a series of experiments conducted on two different bass reflex ports designs to assess their performance in terms of flow turbulence and sound-level compression at high input power levels. These issues are quite important in professional sound systems, where increasing power levels and sound clarity require exponentially growing cost and weight. For these reasons it is vital to optimize port design. To the knowledge of the authors there does not exist an accurate, nonintrusive experimental full-field study of air flows emitting from reflex ports in operating conditions. In this work, the experimental fluid dynamic investigation has been conducted by means of PIV and LDA techniques. [ABSTRACT FROM AUTHOR] |