Antimicrobial Peptides in the Airway.

Autor: Compans, R. W., Cooper, M. D., Honjo, T., Koprowski, H., Melchers, F., Oldstone, M. B. A., Olsnes, S., Vogt, P. K., Wagner, H., Shafer, William M., Laube, D. M., Yim, S., Ryan, L. K., Kisich, K. O., Diamond, G.
Zdroj: Antimicrobial Peptides & Human Disease; 2006, p153-182, 30p
Abstrakt: The airway provides numerous defense mechanisms to prevent microbial colonization by the large numbers of bacteria and viruses present in ambient air. An important component of this defense is the antimicrobial peptides and proteins present in the airway surface fluid (ASF), themucin-rich fluid covering the respiratory epithelium. These include larger proteins such as lysozyme and lactoferrin, as well as the cationic defensin and cathelicidin peptides. While some of these peptides, such as human β-defensin (hBD)-1, are present constitutively, others, including hBD2 and t-3 are inducible in response to bacterial recognition by Toll-like receptor-mediated pathways. These peptides can act as microbicides in the ASF, but also exhibit other activities, including potent chemotactic activity for cells of the innate and adaptive immune systems, suggesting they play a complex role in the host defense of the airway. Inhibition of antimicrobial peptide activity or gene expression can result in increased susceptibility to infections. This has been observed with cystic fibrosis (CF), where the CF phenotype leads to reduced antimicrobial capacity of peptides in the airway. Pathogenic virulence factors can inhibit defensin gene expression, as can environmental factors such as air pollution. Such an interference can result in infections by airway-specific pathogens including Bordetella bronchiseptica, Mycobacterium tuberculosis, and influenza virus. Research into the modulation of peptide gene expression in animal models, as well as the optimization of peptide-based therapeutics shows promise for the treatment and prevention of airway infectious diseases. [ABSTRACT FROM AUTHOR]
Databáze: Supplemental Index