Autor: |
Omondi, Amos R., Rajapakse, Jagath C., Chip-Hong Chang, Menon Shibu, Rui Xiao |
Zdroj: |
FPGA Implementations of Neural Networks; 2006, p225-245, 21p |
Abstrakt: |
This chapter presents an efficient architecture of Kohonen Self-Organizing Feature Map (SOFM) based on a new Frequency Adaptive Learning (FAL) algorithm which efficiently replaces the neighborhood adaptation function of the conventional SOFM. For scalability, a broadcast architecture is adopted with homogenous synapses composed of shift register, counter, accumulator and a special SORTING UNIT. The SORTING UNIT speeds up the search for neurons with minimal attributes. Dead neurons are reinitialized at preset intervals to improve their adaptation. The proposed SOFM architecture is prototyped on Xilinx Virtex FPGA using the prototyping environment provided by XESS. A robust functional verification environment is developed for rapid prototype development. Rapid prototyping using FPGAs allows us to develop networks of different sizes and compare the performance. Experimental results show that it uses 12k slices and the maximum frequency of operation is 35.8MHz for a 64-neuron network. A 512 X 512 pixel color image can be quantized in about 1.003s at 35MHz clock rate without the use of subsampling. The Peak Signal to Noise Ratio (PSNR) of the quantized images is used as a measure of the quality of the algorithm and the hardware implementation. [ABSTRACT FROM AUTHOR] |
Databáze: |
Supplemental Index |
Externí odkaz: |
|