Abstrakt: |
ABSTRACTCandidate vaccines composed of a DNA construct to prime the immune system, followed by modified vaccinia Ankara (MVA) containing matching genes as a booster vaccination, have produced encouraging immune responses in human volunteers. This study presents the detailed construction and characterization of a recombinant MVA that will be tested in combination with a DNA vaccine in Phase I clinical trials in South Africa and the United States. To match recently transmitted viruses in the southern African region and to maximize epitope coverage, the vaccines were constructed to contain five HIV-1 subtype C genes, namely gag, reverse transcriptase, tat, and nef (grttn), expressed as a polyprotein, and a truncated env (gp150). An initial recombinant MVA construct containing wild-type envwas found to be genetically unstable, and thus a human codon-optimized gene was used. Grttnand gp150were inserted into two different sites in MVA yielding a double recombinant, SAAVI MVA-C. The recombinant MVA was shown to be genetically stable and high level expression of the transgenes was observed. Env retained infectivity in a functional infectivity assay despite a point mutation that arose during virus generation. Mice inoculated with SAAVI MVA-C at various doses developed high levels of Gag, RT, and Env-specific CD8and CD4T cells, and some of these responses could be boosted by a second inoculation. An accompanying paper describes the immunogenicity of SAAVI MVA-C when given in combination with SAAVI DNA-C. [ABSTRACT FROM AUTHOR] |