Mechanisms of nutrient modulation of the immune response.

Autor: Cunningham-Rundles, Susanna, McNeeley, David F., Moon, Aeri
Předmět:
Zdroj: Journal of Allergy & Clinical Immunology; Jun2005, Vol. 115 Issue 6, p1119-1128, 10p
Abstrakt: Lack of adequate macronutrients or selected micronutrients, especially zinc, selenium, iron, and the antioxidant vitamins, can lead to clinically significant immune deficiency and infections in children. Undernutrition in critical periods of gestation and neonatal maturation and during weaning impairs the development and differentiation of a normal immune system. Infections are both more frequent and more often become chronic in the malnourished child. Recent identification of genetic mechanisms is revealing critical pathways in the gastrointestinal immune response. New studies show that the development of tolerance, control of inflammation, and response to normal mucosal flora are interrelated and linked to specific immune mechanisms. Nutrients act as antioxidants and as cofactors at the level of cytokine regulation. Protein calorie malnutrition and zinc deficiency activate the hypothalamic-pituitary-adrenal axis. Increased circulating levels of glucocorticoids cause thymic atrophy and affect hematopoiesis. Chronic undernutrition and micronutrient deficiency compromise cytokine response and affect immune cell trafficking. The combination of chronic undernutrition and infection further weakens the immune response, leading to altered immune cell populations and a generalized increase in inflammatory mediators. Obesity caused by excess nutrition or excess storage of fats relative to energy expenditure is a form of malnutrition that is increasingly seen in children. Leptin is emerging as a cytokine-like immune regulator that has complex effects in both overnutrition and in the inflammatory response in malnutrition. Because the immune system is immature at birth, malnutrition in childhood might have long-term effects on health. [Copyright &y& Elsevier]
Databáze: Supplemental Index