Autor: |
Kento Odaka, Shota Kamiyama, Hideo Takizawa, Naoki Takano, Satoru Matsunaga |
Předmět: |
|
Zdroj: |
Journal of Prosthodontic Research; 2023, Vol. 67 Issue 4, p626-632, 7p |
Abstrakt: |
Purpose: In this study, the fatigue properties of additively manufactured titanium clasps were compared with those of commercially pure titanium (CPTi) and Ti-6Al-4V (Ti64), manufactured using laser powder-bed fusion. Methods: Fourteen specimens of each material were tested under the cyclic condition at 1 Hz with applied maximum strokes ranging from 0.2 to 0.5 mm, using a small stroke fatigue testing machine. A numerical approach using finite element analysis (FEA) was also developed to predict the fatigue life of the clasps. Results: The results showed that although no significant differences were observed between the two materials when a stroke larger than 0.35 mm was applied, CPTi had a better fatigue life under a stroke smaller than 0.33 mm. The distributions of the maximum principal stress in the FEA and the fractured position in the experiment were in good agreement. Conclusions: Using a design of the clasp of the present study, the advantage of the CPTi clasp in its fatigue life under a stroke smaller than 0.33 mm was revealed experimentally. Furthermore, the numerical approach using FEA employing calibrated parameters for the Smith-Watson-Topper method are presented. Under the limitations of the aforementioned clasp design, the establishment of a numerical method enabled us to predict the fatigue life and ensure the quality of the design phase before manufacturing. [ABSTRACT FROM AUTHOR] |
Databáze: |
Supplemental Index |
Externí odkaz: |
|