Anti-atherosclerotic activity of aqueous extract of Ipomoea batatas (L.) leaves in high-fat diet-induced atherosclerosis model rats.

Autor: Arief Waskito, Budi, Sargowo, Djanggan, Kalsum, Umi, Tjokroprawiro, Askandar
Předmět:
Zdroj: Journal of Basic & Clinical Physiology & Pharmacology; Nov2023, Vol. 34 Issue 6, p725-734, 10p
Abstrakt: Cardiovascular diseases, especially atherosclerosis, are the leading cause of human mortality in Indonesia. Ipomoea batatas (L.) is a food plant used in Indonesian traditional medicine to treat cardiovascular diseases and related conditions. We assessed the anti-atherosclerotic activity of the aqueous extract of I. batatas leaves in a rat model of high-fat diet-induced atherosclerosis and its mechanism. The presence of amino acid content in the I. batatas L. purple variant was determined by liquid chromatography high-resolution mass spectrometry (LC-HRMS). Thirty male Wistar rats were divided into five groups (n=6/group), i.e., standard diet group (SD), high-fat diet group (HF), and HF plus I. batatas L. extracts orally (625; 1,250; or 2,500 mg/kg) groups. The numbers of macrophages and aortic wall thickness were analyzed histologically. Immunohistochemical analyses were performed to assess foam cells-oxidized low-density lipoprotein (oxLDL), endothelial nitric oxide synthase (eNOS), and vascular endothelial growth factor (VEGF) expression in the aorta. LC-HRMS analysis showed nine amino acid content were identified from I. batatas L. In vivo study revealed that oral administration of I. batatas L. leaf extract alleviated foam cells-oxLDL formation and aortic wall thickness caused by high-fat diet atherosclerosis rats. Further, I. batatas L. leaf extract promoted the number of macrophages and modulated VEGF and eNOS expression in the aorta. I. batatas L. leaf extract shows a positive anti-atherosclerosis effect. Furthermore, the mechanism may promote the macrophages, eNOS, VEGF expressions, and inhibition of foam cells-oxLDL formation and aortic wall thickness with the best dosage at 2,500 mg/kg. This could represent a novel approach to prevent cardiovascular diseases. [ABSTRACT FROM AUTHOR]
Databáze: Supplemental Index