Autor: |
Ding Li, Yuki Miyasaka, Arisa Kubota, Takuma Kozono, Yoshikazu Kitano, Nobumitsu Sasaki, Tadashi Fujii, Takumi Tochio, Yoshihiro Kadota, Atsushi Nishikawa, Takashi Tonozuka |
Předmět: |
|
Zdroj: |
Bioscience, Biotechnology & Biochemistry; Sep2023, Vol. 87 Issue 9, p981-990, 10p |
Abstrakt: |
The trisaccharide 1-kestose, a major constituent of fructooligosaccharide, has strong prebiotic effects. We used high-performance liquid chromatography and 1H nuclear magnetic resonance spectroscopy to show that BiBftA, a β-fructosyltransferase belonging to glycoside hydrolase family 68, from Beijerinckia indica subsp. indica catalyzes transfructosylation of sucrose to produce mostly 1-kestose and levan polysaccharides. We substituted His395 and Phe473 in BiBftA with Arg and Tyr, respectively, and analyzed the reactions of the mutant enzymes with 180 g/L sucrose. The ratio of the molar concentrations of glucose and 1-kestose in the reaction mixture with wild-type BiBftA was 100:8.1, whereas that in the reaction mixture with the variant H395R/F473Y was 100:45.5, indicating that H395R/F473Y predominantly accumulated 1-kestose from sucrose. The X-ray crystal structure of H395R/F473Y suggests that its catalytic pocket is unfavorable for binding of sucrose while favorable for transfructosylation. BiBftA catalyzed transfructosylation of sucrose to produce 1-kestose, and H395R/F473Y variant predominantly accumulated 1-kestose. [ABSTRACT FROM AUTHOR] |
Databáze: |
Supplemental Index |
Externí odkaz: |
|