Autor: |
Ferraz, Filipe C., Monteiro, Raul V. A., Teixeira, Raoni F. S., Bretas, Arturo S. |
Předmět: |
|
Zdroj: |
Journal of Control, Automation & Electrical Systems; Aug2023, Vol. 34 Issue 4, p842-857, 16p |
Abstrakt: |
Through the development of smart grids, programs such as demand side response, have been presented as auxiliary services to the real-time operation of distributed networks. In order to provide consumers information on their energy consumption, so that a modulation in consumption is possible, non-intrusive load monitoring has been introduced as an solution to this pattern recognition problem. Non-intrusive load monitoring enables the modeling of electrical loads connected to the low-voltage system, considering only a single measurement point. Presented state-of-the-art solutions though, consider availability of data as well as representation of all possible classes of the environment. This is of course a most conservative hypothesis, since in real-life applications availability of such data is much difficult, as well as the dynamic behavior of models is implicitly evolving in time. In this work a framework that uses neural Siamese networks with k-nearest neighbor clustering is presented toward non-intrusive load monitoring. Online learning feature is implemented, which relaxes the hypothesis of data requirements as well addresses the evolving nature of load profile. k-nearest clustering allows nonlinear characteristic space modelling. Test results using synthetics and real-life data show that the solution, besides obtaining a good generalizability in the classification, also obtained results with an accuracy of 95.77%. [ABSTRACT FROM AUTHOR] |
Databáze: |
Supplemental Index |
Externí odkaz: |
|