Abstrakt: |
The purpose of this study is to explore the effects of different water and nitrogen interaction on yield and processing quality of high-quality wheat with strong gluten Shiluan 02-1, and to provide theoretical basis for how to achieve the goal of synergistically improving grain yield and processing quality through reasonable irrigation and optimal nitrogen application rate in the production of strong gluten wheat. From 2017 to 2020, the two factors split zone experiment of watering times and nitrogen application amount was set under field conditions. The main-plot factor was watering times [spring watering one time (W1, jointing water) and spring watering two times (W2, jointing water + flowering water)]; and the split-plot factor was nitrogen (N) fertilizer treatment in six levels (N0: 0, N1: 60, N2: 120, N3: 180, N4: 240, and N5: 300 kg hm-2). The study showed that: When N application rate was 0--300 kg hm-2, the yield of spring irrigating one time and spring irrigating two times increased first and then decreased with the increase of N application rate, and the N application amount corresponding to the maximum grain yield was 240 kg hm-2 in the different precipitation years. When N application rate was 120--300 kg hm-2, the yield of spring irrigating two times was significantly higher than that of spring irrigating one time. Water and N interaction had the greatest effect on the number of grains per unit area, followed by 1000-grain weight, which had the least effect on grain number per spike. When N application rate was 0--300 kg hm-2, the average value of wet gluten content, sedimentation value, water absorption rate, dough stability time, tensile energy, and maximum tensile resistance of winter wheat treated with spring irrigating two times were higher than those treated with spring irrigating one time in 2017 and 2018 (wet year). However, in 2018--2019 and 2019--2020 (drought year), it was opposite: spring irrigating one time was higher than spring irrigating two times. The wet gluten content and sedimentation value of wheat in spring irrigating one time and spring irrigating two times increased first and then decreased or gradually increased with the increase of N application rate in different precipitation years, the N application rate corresponding to the maximum of the two quality indicators was 240 kg hm-2 or 300 kg hm-2. The stabilization time, tensile energy, and maximum tensile resistance increased first and then decreased with the increase of N application rate, and reached the maximum value when N application rate was 240 kg hm-2. The grain yield and processing quality of high-quality wheat with strong gluten Shiluan 02-1 were the best when it was watered twice in spring and N was applied at 240 kg hm-2 in different precipitation years. [ABSTRACT FROM AUTHOR] |