Abstrakt: |
Prolonged exercise in a hot environment increases the minute ventilation (V4 E) and respiratory rate (RR) with an increase in core temperature. This hyperthermia-induced hyperventilation decreases the partial pressure of arterial blood carbon dioxide (PaCO2). Conversely, nasal breathing during exercise has been reported to produce low V4 E and RR values and high PaCO2 values; however, no studies have investigated this in hot environments. Therefore, the purpose of this study was to clarify the effect of nasal breathing on estimated partial pressure of carbon dioxide in arterial blood (PaCO2,estimate) during prolonged exercise in a hot environment. Twelve university endurance athletes participated in the study and performed a 40-minutes steady-state cycling exercise at an intensity of 55% of peak oxygen uptake in a hot environment (room temperature 35℃, relative humidity 40%). Using randomized crossover design, two experiments were performed—nasal breathing condition (NB) and mouth breathing condition (MB). Moreover, physiological indices were measured during the exercise. Rectal temperature increased in both conditions, but there was no significant difference between these conditions. PaCO2,estimate values were significantly higher in NB between 10 minutes and 40 minutes of exercise (p < 0.05) compared to MB, and decreased with time in MB. Compared to MB, the V4 E was significantly lower in NB between 30 minutes and 40 minutes (p < 0.05), while the RR was significantly lower in NB between 25 minutes and 40 minutes of exercise (p < 0.05). Therefore, nasal breathing during a prolonged moderate-intensity exercise in a hot environment prevented the decrease in PaCO2,estimate due to hyperthermia-induced hyperventilation. [ABSTRACT FROM AUTHOR] |