Abstrakt: |
To explore the roles of FAD2s in response to cold stress in peanut, we cloned seven AhFAD2 genes from normal oleate peanut ZH16 and high oleate peanut ZH413, respectively. The results of qRT-PCR showed that the expression patterns of FAD2 genes were similar in ZH16 and ZH413. AhFAD2-1A/B was highly expressed in flower and developing seed, AhFAD2-3A/B was mainly expressed in leaf and stem, and AhFAD2-4A/B was expressed specifically in root and flower, indicating that AhFAD2 genes played their respective roles in different developmental stages and tissues of peanut. At 6 days after inducing under 15 °C, the germination rate of ZH16 was significantly decreased while that of ZH413 was not significantly affected. The expression of both AhFAD2-1A/B and AhFAD2-4A/B were induced by cold stress. The expression of AhFAD2-1A/B was significantly up-regulated at 6 DAI in ZH16, while at 1 DAI in ZH413, suggesting that AhFAD2-1A/B was induced by cold more quickly in high oleate peanut. Furthermore, the expression of AhFAD2-4A/B was significantly up-regulated at 3 DAI in ZH16 and then decreased, while it was increased immediately and maintained at high level for six days in ZH413. Based on these results, we speculate that up-regulation of AhFAD2-4A/B may compensate the function of AhFAD2-1A/B that is deactivated under cold stress in high oleate peanut, and the deactivation of AhFAD2-1A/B is not the most important factors affecting peanut cold tolerance. This study provides a theoretical basis in breeding of high oleate peanut with high tolerance to cold stress, and the theoretical support for extension of high oleate peanut in both high latitude and high altitude regions. [ABSTRACT FROM AUTHOR] |