Abstrakt: |
Water deficit is responsible for a negative impact on agricultural systems. Several physiological, biochemical, and molecular processes are initiated as a response to water-deficit stress. Quantifying the differential expression of the genes involved in the response to water-deficit stress plays a key role in the development of molecular strategies for engineering water-stress tolerance in plants. Therefore, the present study aims to evaluate the expression of key genes involved in the water-deficit response process in peach trees cv. Chimarrita grafted onto two different rootstocks. The experimental design was completely randomized, with four treatments that correspond to the evaluation periods: day zero (control), the fourth, seventh, and ninth days of water-deficit stress. Leaf samples of each Chimarrita/rootstock combination were analyzed separately. The expression of the genes related to ethylene biosynthesis, osmotic adjustment, and carbohydrate metabolism, namely ACC oxidase, GTL, SDH, SIP1, SOT1, S6PDH, and P5CS was quantified by real-time quantitative polymerase chain reaction (RT-qPCR). A differential response was observed in the expression of the SDH, GTL, P5CS, and SIP1 genes between Chimarrita/rootstock (Aldrighi 1 and Tsukuba 2) combinations. In both combinations of grafting, the S6PDH gene presented the highest level of expression at the fourth day of stress. These results show that genes related to carbohydrate and proline metabolism are important molecular markers to identify variability to water-deficit tolerance in Prunus persica. [ABSTRACT FROM AUTHOR] |