Autor: |
JOMJUNYONG, K., RUNGSIYAKULL, P., RUNGSIYAKULL, C., AUNMEUNGTONG, W., CHANTARAMUNGKORN, M., KHONGKHUNTHIAN, P. |
Předmět: |
|
Zdroj: |
ORAL & Implantology; Oct-Dec2017, Vol. 10 Issue 4, p369-380, 12p |
Abstrakt: |
Introduction. Although many previous studies have reported on the high success rate of short dental implants, prosthetic design still plays an important role in the long-term implant treatment results. This study aims to evaluate stress distribution characteristics involved with various prosthetic designs on standard implants or short implants in the posterior maxilla. Materials and methods. Six finite element models were simulated representing the missing first and second maxillary molars. A standard implant (PW+ implant: 5.0x10 mm) and a short implant (PW+ implant: 5.0x6.0 mm) were applied under the various prosthetic conditions. The peri-implant maximum bone stress (V on mises stress) was evaluated when 200 N 30° oblique load was applied. A type III bone was approximated and complete osseous integration was assumed. Results. Maximum Von mises stress was numerically located at the cortical bone around the implant neck in all models. In every standard implant model shows better stress distribution. Stress values and concentration area decreased in the cortical and cancellous bone when implants were splinted in both the standard and short implant models. With regard to the non-replacing second molar models found that the area of stress at the cortical bone around the first molar implant to be more intensive. Moreover, in the non-replacing second molar models, the stress also spread to the second pre-molar in both the standard and short implant models. Conclusions. The length of the implant and prosthetics designs both affect the stress value and distribution of stress to the cortical and cancellous bones around the implant. [ABSTRACT FROM AUTHOR] |
Databáze: |
Supplemental Index |
Externí odkaz: |
|