Abstrakt: |
The possibility of the operation of stochastic heating mechanisms of charged particles in a configuration consisting of a left-handed circularly polarized standing electromagnetic wave and a uniform magnetic field, has been studied numerically and theoretically. It is found that such a configuration induces stochasticity, the threshold of which is dependent on two independent parameters, determined by the frequency and the amplitude of the wave and the strength of the magnetic field. From the theoretical analysis, it emerges that the origin of onset of large-scale stochasticity is the destabilization of fixed points associated with an equation describing the motion of the particles in an electrostatic-type potential having standing wave characteristics. The comparison of the theoretical predictions with the numerical results is found to be quite satisfactory. Possible applications to realistic plasmas have been discussed. [ABSTRACT FROM AUTHOR] |