Autor: |
Kraniotis, Dimitrios, Thiis, Thomas K., Aurlien, Tormod |
Předmět: |
|
Zdroj: |
Buildings (2075-5309); Mar2014, Vol. 4 Issue 1, p27-42, 16p |
Abstrakt: |
Wind-driven air infiltration has been recognized among the major reasons for energy loss in buildings, and the impact to energy efficiency under steady conditions has been reported and issued as part of many building codes. The nearly zero-energy building demand makes uncontrolled leakage paths even more undesired and creates the need for further investigation of their behavior under unsteady wind conditions. The present numerical study examines the role of wind gustiness on instantaneous infiltration rates of a low-rise building. For this purpose, two levels of gust frequency Ω have been simulated, expressed as a sinusoidal factor in the wind profile formula. In parallel, a ratio α is employed to represent seven different cases of external leakages distribution, while five scenarios of compartmentalization and internal leakages shows the impact of the latter on the dynamics of building air exchange rates. The results indicate that higher wind gustiness results in higher ACH, marking out gusts as a potential critical factor under unsteady climate conditions. The infiltration rates shown in relation to the leakage distribution ratio α provide arguments for the importance of the detailed detection of external leakages while the comparison of the different internal-volume-scenario highlights the key-role of internal leakages control towards a drastic reduction of infiltration rates. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|