A combination oligonucleotide" antisense strategy to downregulate thymidylate synthase and decrease tumor cell growth and drug resistance.

Autor: Berg, Randal W, Ferguson, Peter J, Vincent, Mark D, Koropatnick, D James
Předmět:
Zdroj: Cancer Gene Therapy; Apr2003, Vol. 10 Issue 4, p278, 9p
Abstrakt: Thymidylate synthase (TS) catalyzes de novo production of thymidylate for DNA synthesis and cell proliferation. As such, TS has been a target of antitumor chemotherapy for many years. Our laboratory has identified several antisense oligodeoxynucleotides (ODNs) that downregulate TS mRNA and protein, inhibit cell proliferation, and sensitize cells to TS-directed chemotherapeutic drugs. Based on our observation that targeting distinct regions of the TS mRNA with a variety of antisense molecules resulted in differential effects on TS mRNA levels, it was hypothesized that use of multiple ODNs targeting distinct noncontiguous regions would result in synergistic or antagonistic interactions. In this study, we report that some combinations of TS antisense ODNs were more effective at reducing TS mRNA abundance and inhibiting cell proliferation than the individual ODNs used alone. However, in contrast to the effects on cell proliferation, the enhanced sensitivity to anti-TS chemotherapeutic drugs (i.e., raltitrexed and 5-fluorodeoxyuridine) that is achieved by treatment with individual ODNs was not further augmented by combined ODN treatment. This suggests that ODNs targeting TS mRNA inhibit an alternative function of TS mRNA or protein, distinct from thymidylate production. The results are evidence that the novel use of multiple antisense ODNs that target different regions of the same mRNA represents a general strategy to improve antisense effectiveness. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index