Dynamics of asymmetric binary glass formers. I. A dielectric and nuclear magnetic resonance spectroscopy study.

Autor: Kahlau, R., Bock, D., Schmidtke, B., Rössler, E. A.
Předmět:
Zdroj: Journal of Chemical Physics; 1/28/2014, Vol. 140 Issue 4, p044509-1-044509-12, 12p, 1 Chart, 17 Graphs
Abstrakt: Dielectric spectroscopy as well as ²H and 31P nuclear magnetic resonance spectroscopy (NMR) are applied to probe the component dynamics of the binary glass former tripropyl phosphate (TPP)/polystyrene (PS/PS-d3) in the full concentration (cTPP) range. In addition, depolarized light scattering and differential scanning calorimetry experiments are performed. Two glass transition temperatures are found: Tg1(cTPP) reflects PS dynamics and shows a monotonic plasticizer effect, while the lower Tg2(cTPP) exhibits a maximum and is attributed to (faster) TPP dynamics, occurring in a slowly moving or immobilized PS matrix. Dielectric spectroscopy probing solely TPP identifies two different time scales, which are attributed to two sub-ensembles. One of them, again, shows fast TPP dynamics (α2-process), the other (α1-process) displays time constants identical with those of the slow PS matrix. Upon heating the α1-fraction of TPP decreases until above some temperature Tc only a single α2-population exists. Inversely, below Tc a fraction of the TPP molecules is trapped by the PS matrix. At low cTPP the α2-relaxation does not follow frequency-temperature superposition (FTS), instead it is governed by a temperature independent distribution of activation energies leading to correlation times which follow Arrhenius laws, i.e., the α2-relaxation resembles a secondary process. Yet, 31P NMR demonstrates that it involves isotropic reorientations of TPP molecules within a slowly moving or rigid matrix of PS. At high cTPP the super-Arrhenius temperature dependence of τ2(T), as well as FTS are recovered, known as typical of the glass transition in neat systems. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index