Abstrakt: |
We investigated a 3.75-m-long lacustrine sediment record from Lake Äntu Sinijärv, northern Estonia, which has a modeled basal age >12,800 cal yr BP. Our multi-proxy approach focused on the stable oxygen isotope composition (δO) of freshwater tufa. Our new palaeoclimate information for the Eastern Baltic region, based on high-resolution δO data (219 samples), is supported by pollen and plant macrofossil data. Radiocarbon dates were used to develop a core chronology and estimate sedimentation rates. Freshwater tufa precipitation started ca. 10,700 cal yr BP, ca. 2,000 years later than suggested by previous studies on the same lake. Younger Dryas cooling is documented clearly in Lake Äntu Sinijärv sediments by abrupt appearance of diagnostic pollen ( Betula nana, Dryas octopetala), highest mineral matter content in sediments (up to 90 %) and low values of δO (less than −12 ‰). Globally recognized 9.3- and 8.2-ka cold events are weakly defined by negative shifts in δO values, to −11.3 and −11.7 ‰, respectively, and low concentrations of herb pollen and charcoal particles. The Holocene thermal maximum (HTM) is palaeobotanically well documented by the first appearance and establishment of nemoral thermophilous taxa and presence of water lilies requiring warm conditions. Isotope values show an increasing trend during the HTM, from −11.5 to −10.5 ‰. Relatively stable environmental conditions, represented by only a small-scale increase in δO (up to 1 ‰) and high pollen concentrations between 5,000 and 3,000 cal yr BP, were followed by a decrease in δO, reaching the most negative value (−12.7 ‰) recorded in the freshwater tufa ca. 900 cal yr BP. [ABSTRACT FROM AUTHOR] |