Field-driven sense elements for chirality-dependent domain wall detection and storage.

Autor: Bowden, S. R., Unguris, J.
Předmět:
Zdroj: Journal of Applied Physics; Dec2013, Vol. 114 Issue 22, p223904, 9p, 3 Color Photographs, 1 Diagram
Abstrakt: A method for locally sensing and storing data of transverse domain wall chirality in planar nanowire logic and memory systems is presented. Patterned elements, in close proximity to the nanowires, respond to the asymmetry in the stray field from the domain wall to produce a chirality-dependent response. When a bias field is applied, a stray field-assisted reversal of the element magnetization results in a reversed remanent state, measurable by scanning electron microscopy with polarization analysis (SEMPA). The elements are designed as triangles with tips pointing toward the nanowire, allowing the shape anisotropy to be dominated by the base but having a portion with lower volume and lower energy barrier closest to the domain wall. Micromagnetic modeling assists in the design of the nanowire-triangle systems and experiments using SEMPA confirm the importance of aspect ratio and spacing given a constant bias field magnitude. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index