Abstrakt: |
Proton pump inhibitors (PPIs) are potent blockers of gastric acid secretion, used by millions of patients suffering from gastric acid-related complaints. Although PPIs have an excellent safety profile, an increasing number of case reports describe patients with severe hypomagnesemia due to long-term PPI use. As there is no evidence of a renal Mg 2+ leak, PPI-induced hypomagnesemia is hypothesized to result from intestinal malabsorption of Mg 2+. The aim of this study was to investigate the effect of PPIs on Mg 2+ homeostasis in an in vivo mouse model. To this end, C57BL/6J mice were treated with omeprazole, under normal and low dietary Mg 2+ availability. Omeprazole did not induce changes in serum Mg 2+ levels (1.48 ± 0.05 and 1.54 ± 0.05 mmol/L in omeprazole-treated and control mice, respectively), urinary Mg 2+ excretion (35 ± 3 μmol/24 h and 30 ± 4 μmol/24 h in omeprazole-treated and control mice, respectively), or fecal Mg 2+ excretion (84 ± 4 μmol/24 h and 76 ± 4 μmol/24 h in omeprazole-treated and control mice, respectively) under any of the tested experimental conditions. However, omeprazole treatment did increase the mRNA expression level of the transient receptor potential melastatin 6 (TRPM6), the predominant intestinal Mg 2+ channel, in the colon (167 ± 15 and 100 ± 7 % in omeprazole-treated and control mice, respectively, P < 0.05). In addition, the expression of the colonic H +,K +-ATPase (cHK-α), a homolog of the gastric H +,K +-ATPase that is the primary target of omeprazole, was also significantly increased (354 ± 43 and 100 ± 24 % in omeprazole-treated and control mice, respectively, P < 0.05). The expression levels of other magnesiotropic genes remained unchanged. Based on these findings, we hypothesize that omeprazole inhibits cHK-α activity, resulting in reduced extrusion of protons into the large intestine. Since TRPM6-mediated Mg 2+ absorption is stimulated by extracellular protons, this would diminish the rate of intestinal Mg 2+ absorption. The increase of TRPM6 expression in the colon may compensate for the reduced TRPM6 currents, thereby normalizing intestinal Mg 2+ absorption during omeprazole treatment in C57BL/6J mice, explaining unchanged serum, urine, and fecal Mg 2+ levels. [ABSTRACT FROM AUTHOR] |