Abstrakt: |
The effect of dietary ethanol on metabolic fates of glucose and ethanol, and activities of lipoprotein lipase and hormone-sensitive lipase in several tissues of miniature pigs were determined in vitro. Ethanol and glucose were used at similar rates for fatty acid synthesis in liver and brain and CO2 production in liver. Ethanol was preferred over glucose for fatty acid and CO2 production in ileal mucosal cells. Glucose was the preferred substrate for lipogenesis and oxidation to CO2 in adipose tissue and skeletal muscle, and for oxidation to CO2 in brain. Dietary ethanol decreased glucose and ethanol conversion to fatty acids in ileal mucosa and brain, respectively. Dietary ethanol had no effect on the capacity of liver, adipose tissue, and skeletal muscle to convert either glucose or ethanol to long-chain fatty acids. The capacity to oxidize ethanol, but not glucose, to CO2 in liver was increased by dietary ethanol. No dietary ethanol effect was observed in other tissues. The capacity for removal of plasma triglycerides (based on lipoprotein lipase activity) tended to increase in adipose tissue and skeletal muscle of pigs fed ethanol. Mobilization of long-chain fatty acids from adipose tissue (based on hormone-sensitive lipase activity), triglyceride concentration in plasma, and percentage of lipid in liver remained unchanged when ethanol was fed. Livers of ethanol-fed pigs, however, were larger than livers of control pigs. Our results indicate that feeding miniature pigs 21-37% of total caloric intake as ethanol causes significant metabolic adaptations of lipid metabolism in liver and ileal mucosa, but not in adipose tissue, skeletal muscle, and brain. The ethanol feeding, however, did not cause fatty livers or hyperlipidemia. [ABSTRACT FROM AUTHOR] |