Abstrakt: |
The γ-distonic radical ions R \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm O}\limits^ + $\end{document}CHR′CH2ĊHR″ and their molecular ion counterparts R \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm O}\limits^{{\rm + } \cdot } $\end{document}CHR′CH2CH2R″ have been studied by isotopic labelling and collision-induced dissociation, applying a potential to the collision cell in order to separate activated from spontaneous decompositions. The stability of CH3 \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm O}\limits^ + $\end{document}HCH(CH3)CH2ĊHCH3, C2H5 \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm O}\limits^ + $\end{document}HCH(CH3)CH2ĊHCH3, CH3 \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm O}\limits^ + $\end{document}HCH(CH3)CH2ĊH2, CH3 \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm O}\limits^ + $\end{document}HCH2CH2ĊHCH3 and C2H5 \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm O}\limits^ + $\end{document}HCH2CH2ĊHCH3, has been demonstrated and their characteristic decomposition, alcohol loss, identified. For all these γ-distonic ions, the 1,4-H abstraction leading to their molecular ion counterpart exhibits a primary isotope effect. [ABSTRACT FROM AUTHOR] |