A binary screening assay for pro-oestrogens in food: metabolic activation using hepatic microsomes and detection with oestrogen sensitive recombinant yeast cells.

Autor: Coldham, N. G., Horton, R., Byford, M. F., Sauer, M. J.
Předmět:
Zdroj: Food Additives & Contaminants; Dec2002, Vol. 19 Issue 12, p1138-1147, 10p
Abstrakt: An assay, employing microsomes prepared from rat liver and a recombinant cell bioassay (RCBA) expressing the human oestrogen receptor (α) linked to a reporter gene, was evaluated for the detection of pro-oestrogens in food using methoxychlor and mestranol as model compounds. Bio-activation of the hop phytoestrogen isoxanthohumol to the potent oestrogen 8-prenylnaringenin was also investigated. The oestrogenic potency values for reference standards determined with the RCBA (17β-oestradiol = 100%) were: methoxychlor 0.0025%, mestranol 1.3%, isoxanthohumol 0.001%, and for their potential respective metabolites were: bishydroxymethoxychlor 0.015%, 17α-ethynyl oestradiol 69% and 8-prenylnaringenin 0.4%. Incubation of methoxychlor and mestranol (10 μM) with microsomes prepared from the liver of rats treated with Aroclor 1254 significantly increased (p < 0.001) their oestrogenic potency from 0.0021 and 2.4% to 0.015 and 8.3%, respectively. In contrast, the potency of the hop phytoestrogen isoxanthohumol was unchanged. Metabolites were identified by UV-HPLC-MS/MS as monohydroxy methoxychlor and HPTE from methoxychlor, and the major metabolite of mestranol was 17α-ethynyl oestradiol. There was no evidence for the metabolism of isoxanthohumol. Mestranol was also activated by microsomes induced with saline (control), β-napthoflavone, 3-methylcholantherene, isoniazid or pregnenolone-16α-carbonitrile, but not phenobarbitone. These studies demonstrate the principle for use of a binary assay system for the detection of pro-oestrogens and indicate the potential value for risk assessment of endocrine disrupting chemicals. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index