A SMALL VALUE ESTIMATE FOR $\mathbb {G}_{\lowercase {\textrm {A}}}\times \mathbb {G}_{\lowercase {\textrm {M}}}$.

Autor: Roy, Damien
Zdroj: Mathematika; Jul2013, Vol. 59 Issue 2, p333-363, 31p
Abstrakt: A small value estimate is a statement providing necessary conditions for the existence of certain sequences of non-zero polynomials with integer coefficients taking small values at points of an algebraic group. Such statements are desirable for applications to transcendental number theory to analyze the outcome of the construction of an auxiliary function. In this paper, we present a result of this type for the product $ \mathbb {G}_{\mathrm {a}}\times \mathbb {G}_{\mathrm {m}}$ whose underlying group of complex points is $\mathbb {C}\times \mathbb {C}^{*}$. It shows that if a certain sequence of non-zero polynomials in $ \mathbb {Z}[X_1,X_2]$ takes small values at a point $(\xi ,\eta )$ together with their first derivatives with respect to the invariant derivation $\partial /\partial X_1 + X_2 (\partial /\partial X_2)$, then both $\xi $ and $\eta $ are algebraic over $\mathbb {Q}$. The precise statement involves growth conditions on the degree and norm of these polynomials as well as on the absolute values of their derivatives. It improves on a direct application of Philippon’s criterion for algebraic independence and compares favorably with constructions coming from Dirichlet’s box principle. [ABSTRACT FROM PUBLISHER]
Databáze: Complementary Index