Coarse-grained spin density-functional theory: Infinite-volume limit via the hyperfinite.

Autor: Lammert, Paul E.
Předmět:
Zdroj: Journal of Mathematical Physics; Jun2013, Vol. 54 Issue 6, p062104, 21p
Abstrakt: Coarse-grained spin density functional theory (SDFT) is a version of SDFT which works with number/spin densities specified to a limited resolution - averages over cells of a regular spatial partition - and external potentials constant on the cells. This coarse-grained setting facilitates a rigorous investigation of the mathematical foundations which goes well beyond what is currently possible in the conventional formulation. Problems of existence, uniqueness, and regularity of representing potentials in the coarse-grained SDFT setting are here studied using techniques of (Robinsonian) nonstandard analysis. Every density which is nowhere spin-saturated is V-representable, and the set of representing potentials is the functional derivative, in an appropriate generalized sense, of the Lieb internal energy functional. Quasi-continuity and closure properties of the set-valued representing potentials map are also established. The extent of possible non-uniqueness is similar to that found in non-rigorous studies of the conventional theory, namely non-uniqueness can occur for states of collinear magnetization which are eigenstates of Sz. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index