Autor: |
Baudet, Christel, Perret, Eric, Delpech, Bruno, Kaghad, Mourad, Brachet, Philippe, Wion, Didier, Caput, Daniel |
Předmět: |
|
Zdroj: |
Cell Death & Differentiation; Jan1998, Vol. 5 Issue 1, p116, 10p |
Abstrakt: |
C6.9 rat glioma cells undergo a cell death program when exposed to 1,25-dihydroxyvitamin D3 (1,25-D3). As a global analytical approach, we have investigated gene expression in C6.9 engaged in this cell death program using differential screening of a rat brain cDNA library with probes derived from control and 1,25-D3-treated cells. Using this methodology we report the isolation of 61 differentially expressed cDNAs. Forty-seven cDNAs correspond to genes already characterized in rat cells or tissues. Seven cDNAs are homologous to yeast, mouse or human genes and seven are not related to known genes. Some of the characterized genes have been reported to be differentially expressed following induction of programmed cell death. These include PMP22/gas3, MGP and β-tubulin. For the first time, we also show a cell death program induced up-regulation of the c-myc associated primary response gene CRP, and of the proteasome RN3 subunit and TCTP/mortalin genes. Another interesting feature of this 1,25-D3 induced-cell death program is the down-regulated expression of transcripts for the microtubule motor dynein heavy chain/MAP lC and of the calcium-binding S100β protein. Finally 15 upregulated cDNAs encode ribosomal proteins suggesting a possible involvement of the translational apparatus in this cell program. Alternatively, these ribosomal protein genes could be up-regulated in response to altered rates of cellular metabolism, as has been demonstrated for most of the other isolated genes which encode proteins involved in metabolic pathways. Thus, this study presents to our knowledge the first characterization of genes which are differentially expressed during a cell death program induced by 1,25-D3. Therefore, this data provides new information on the fundamental mechanisms which participate in the antineoplastic effects of 1,25-D3 and on the machinery of a cell death program in a glioma cell line. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|