Abstrakt: |
Radial growth and concentrations of selected elements within rings were studied in white pine ( Pinus strobus) trees from a wetland in central New York approximately 5 km north of a salt-solution mining field that operated from 1889 to 1988. Trees seemingly document three sequential episodes of mine-induced alterations of groundwater discharge irrigating the wetland during the 100-year period. The radial growth of trees established before the onset of mining declined abruptly in the early 1890s and remained suppressed until about 1960, as did growth of numerous other trees that became established after the onset of mining. Suppressed pre-1960 radial growth coincided with the interval that surface water was injected into the saltbeds, suggesting that losses of injected water to the bedrock and/or unconsolidated deposits increased groundwater flow into the wetland. An abrupt and sustained enhancement of radial growth beginning about 1960 indicates that the wetland became drier, and thus more conducive to tree growth, when injection practices were discontinued in the late 1950s despite the continued pumping of brine. Following the cessation of mining in the late 1980s, head pressures again increased in the upper valley, driving chloride-enriched flow northward along regional bedding-plane fractures and into the wetland. Large concentrations of chloride were detected within the most recently formed rings of some trees. As the result of chloride-enriched irrigation, the radial growth of some trees declined, and some trees died. Thus trees have preserved evidence of a century of hydrologic alterations, unobtainable by other means, where the effects of brine mining have not been documented previously. [ABSTRACT FROM AUTHOR] |