Adaptor protein complex 2-mediated, clathrin-dependent endocytosis, and related gene activities, are a prominent feature during maturation stage amelogenesis.

Autor: Lacruz, Rodrigo S, Brookes, Steven J, Wen, Xin, Jimenez, Jaime M, Vikman, Susanna, Hu, Ping, White, Shane N, Lyngstadaas, S Petter, Okamoto, Curtis T, Smith, Charles E, Paine, Michael L
Zdroj: Journal of Bone & Mineral Research; Mar2013, Vol. 28 Issue 3, p672-687, 15p
Abstrakt: Molecular events defining enamel matrix removal during amelogenesis are poorly understood. Early reports have suggested that adaptor proteins (AP) participate in ameloblast-mediated endocytosis. Enamel formation involves the secretory and maturation stages, with an increase in resorptive function during the latter. Here, using real-time PCR, we show that the expression of clathrin and adaptor protein subunits are upregulated in maturation stage rodent enamel organ cells. AP complex 2 (AP-2) is the most upregulated of the four distinct adaptor protein complexes. Immunolocalization confirms the presence of AP-2 and clathrin in ameloblasts, with strongest reactivity at the apical pole. These data suggest that the resorptive functions of enamel cells involve AP-2 mediated, clathrin-dependent endocytosis, thus implying the likelihood of specific membrane-bound receptor(s) of enamel matrix protein debris. The mRNA expression of other endocytosis-related gene products is also upregulated during maturation including: lysosomal-associated membrane protein 1 (Lamp1); cluster of differentiation 63 and 68 (Cd63 and Cd68); ATPase, H+ transporting, lysosomal V0 subunit D2 (Atp6v0d2); ATPase, H+ transporting, lysosomal V1 subunit B2 (Atp6v1b2); chloride channel, voltage-sensitive 7 (Clcn7); and cathepsin K (Ctsk). Immunohistologic data confirms the expression of a number of these proteins in maturation stage ameloblasts. The enamel of Cd63-null mice was also examined. Despite increased mRNA and protein expression in the enamel organ during maturation, the enamel of Cd63-null mice appeared normal. This may suggest inherent functional redundancies between Cd63 and related gene products, such as Lamp1 and Cd68. Ameloblast-like LS8 cells treated with the enamel matrix protein complex Emdogain showed upregulation of AP-2 and clathrin subunits, further supporting the existence of a membrane-bound receptor-regulated pathway for the endocytosis of enamel matrix proteins. These data together define an endocytotic pathway likely used by ameloblasts to remove the enamel matrix during enamel maturation. © 2013 American Society for Bone and Mineral Research. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index